翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

polar topology : ウィキペディア英語版
polar topology
In functional analysis and related areas of mathematics a polar topology, topology of \mathcal-convergence or topology of uniform convergence on the sets of \mathcal is a method to define locally convex topologies on the vector spaces of a dual pair.
== Definitions ==

Let (X,Y,\langle , \rangle) be a dual pair of vector spaces X and Y over the field \mathbb, either the real or complex numbers.
A set A\subseteq X is said to be ''bounded'' in X with respect to Y, if for each element y\in Y the set of values \ is bounded:
:
\forall y\in Y\qquad \sup_|\langle x,y\rangle|<\infty.

This condition is equivalent to the requirement that the polar A^\circ of the set A in Y
:
A^\circ=\

is an absorbent set in Y, i.e.
:
\bigcup_ be a family of bounded sets in X (with respect to Y) with the following properties:
* each point x of X belongs to some set A\in
:
\forall x\in X\qquad \exists A\in \qquad x\in A,

* each two sets A\in and B\in are contained in some set C\in:
:
\forall A,B\in \qquad \exists C\in \qquad A\cup B\subseteq C,

* is closed under the operation of multiplication by scalars:
:
\forall A\in \qquad \forall\lambda\in\qquad \lambda\cdot A\in .

Then the seminorms of the form
:
\|y\|_A=\sup_|\langle x,y\rangle|,\qquad A\in,

define a Hausdorff locally convex topology on Y which is called the polar topology on Y generated by the family of sets . The sets
:
U_=\,\qquad B\in ,

form a local base of this topology. A net of elements y_i\in Y tends to an element y\in Y in this topology if and only if
:
\forall A\in\qquad \|y_i-y\|_A = \sup_ |\langle x,y_i\rangle-\langle x,y\rangle|\underset0.

Because of this the polar topology is often called the topology of uniform convergence on the sets of \mathcal. The semi norm \|y\|_A is the gauge of the polar set A^\circ.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「polar topology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.